Magnetic tweezer experiments as a benchmark for models of DNA-DNA electrostatic interaction

Sébastien Neukirch

CNRS & Univ Paris 6 (France) d'Alembert Institute for Mechanics

> joint work with: Nicolas Clauvelin Basile Audoly

Why study DNA mechanical properties ?

mechanical properties influence biology of the cell

- 2 meters of DNA in a 10 micron wide nucleus
- ejection from viral capside
- transcription (RNApolymerase is torque dependent)
- protein binding is strain dependent, or induces strain on DNA
- chromatin compaction/decompaction (cell division)

Pulling and twisting DNA

(based on Swigon+Coleman model for contact in Kirchhoff rods)

S. Neukirch, "Extracting DNA ...", Phys. Rev. Lett. 93 (2004)

Energy formulation: elastic strain energy

Energy formulation: elastic strain energy

twist au is uniform along the rod

constitutive law: $M = K_3 \tau$

) M

Energy formulation: work of external loads

Energy formulation: self-interaction

hard-wall (contact) => constraint:

$$V = \lambda \ (R - R_0)$$

long-range:
electrostatics
S. Leikin
D. Stitger
Debye-Hukel
G. Manning
...

 $V = L_p \ U(\theta, R)$

Energy formulation: equilibrium

$$V = \frac{1}{2}K_0 \frac{\sin^4 \theta}{R^2} L_p + \frac{1}{2}K_3 \tau^2 L + T L_p - 2\pi nM + \begin{pmatrix} \lambda (R - R_0) \\ \text{or} \\ L_p U(\theta, R) \end{pmatrix}$$

where
$$n = Lk = Tw + Wr = \frac{1}{2\pi} \left(\tau L + \frac{\sin 2\theta}{2R} L_p \right)$$

)

$$V = V[\theta, R, L_p]$$

Euler-Lagrange equations : $\left(\frac{\partial V}{\partial \theta}, \frac{\partial V}{\partial R}, \frac{\partial V}{\partial L_p}\right) = 0$

Energy formulation: results (hard-wall)

$$D = \left(\frac{\partial V}{\partial \theta}, \frac{\partial V}{\partial R}, \frac{\partial V}{\partial L_p}\right) \Rightarrow$$
numerical simulations

$$T = \frac{K_0}{R_0^2} \sin^4 \theta \left(\frac{1}{2} + \frac{1}{\cos 2\theta}\right), \quad T = \frac{K_0}{R_0^2} (1.66 \ \theta^4)$$
order
pressure $p\left(=\frac{\lambda}{L_p}\right) = \frac{K_0}{R_0^3} \frac{\sin^4 \theta}{\cos 2\theta}$
how $M = \frac{2K_0}{R_0} \frac{\cos \theta \sin^3 \theta}{\cos 2\theta}$

N. Clauvelin, B. Audoly, S. Neukirch, Macromolecules (2008)

Energy formulation: results (long-range)

$$D = \left(\frac{\partial V}{\partial \theta}, \frac{\partial V}{\partial R}, \frac{\partial V}{\partial L_p}\right) \Rightarrow \begin{pmatrix} T = \frac{K_0}{2R^2} \sin^4 \theta - R \frac{\partial U}{\partial R} - U(R, \theta) \\ M = \frac{2K_0}{R} \frac{\sin^4 \theta}{\sin 2\theta} - \frac{2R^2}{\sin 2\theta} \frac{\partial U}{\partial R} \\ M = \frac{2K_0}{R} \frac{\cos \theta \sin^3 \theta}{\cos 2\theta} + \frac{R}{\cos 2\theta} \frac{\partial U}{\partial \theta} \end{pmatrix}$$

Once U(θ,R) is given, 3 equations for 3 unknowns (R, θ, M)

2 e⁻ per base-pair <=> 1 e⁻ / 0.17 nm

Alexander MacKerell www.psc.edu

DNA electrostatics : Poisson-Boltzmann

effective charge (10mM): $u = 1.38/L_B \quad (m^{-1})$

$$L_B = \frac{e^2}{\epsilon KT}$$

J. Ubbink, T. Odijk, Biophysical Journal (1999)

n = Lk = Tw + Wrwith Wr linear of z

data from Gilles Charvin (ENS-Paris)

data from Gilles Charvin (ENS-Paris)

n = Lk = Tw + Wrwith Wr linear of z

$$\Rightarrow \frac{dZ}{dn} = \frac{4\pi R}{\sin 2\theta} \rho_{WLC}$$

$$\rho_{WLC} = \frac{Z(n=0)}{L}$$

data from Gilles Charvin (ENS-Paris)

data from Gilles Charvin (ENS-Paris)

Results : comparison with Marko model

PB 10 mM

PB 100 mM

J. Marko, "Torque and dynamics of linking number ...", Phys. Rev. E. (2007)

Remarks

Supercoiling radius R is always > 1nm (no DNA-DNA contact)					
T (pN)	0.2	0.45	0.9	3	PB 100 mM
R (nm)	3.8	3.3	3.0	2.3	

Benchmark for DNA-DNA potentials:

- 1. propose a potential $U(\theta,R)$
- 2. compute theoretical slopes
- 3. compare with experiments

Conclusion

Analytical model for plectonemic DNA
Long-range DNA-DNA interaction potential
Reproduces experimental curves (10–100 mM)
Could serve as a benchmark for DNA-DNA potentials

Thermal fluctuations

Numerical simulations BVP Path following

force from strand at s_2 acting on strand at s,

$$\vec{F}_1 = \vec{p} + \vec{F}_2$$

$$\vec{p} = p \frac{\vec{r}(s_1) - \vec{r}(s_2)}{|\vec{r}(s_1) - \vec{r}(s_2)|}$$

32

Plectonemes geometry

S. Neukirch, "Extracting DNA ...", Phys. Rev. Lett. 93 (2004)

www.boc.uu.se Upsala University

brooklyn.cuny.edu Brooklyn college